And so finally we have reached the stage where we will explain why the atmospheric insulating effect is inherently a ‘massive’ one and not a ‘radiative’ one. The answer is quite intriguing, maybe even a bit surprising to some, the solution rather subtle in many respects. I have settled for two posts, but could probably have written several, considering the bewildering amount of different aspects in some way or other pertaining to this whole issue.
I hope you can bear with me on what might seem like a rather repetitive style of writing in this first post. I have only done so in a humble attempt to punch through the basic idea presented, which might at first come off as a novel or unfamiliar one to most people.
The second post is more lengthy, gradually winding its way towards the final resolution. When reading it, always bear this first one in mind.
I will most likely at some point publish a (strongly) condensed version of these posts. However, their content and interconnected nature might take time to digest.
OK. Let’s begin …
TO NECESSITATE > TO ENABLE > TO CAUSE
In his ‘Physics Today’ feature article of January 2011, “Infrared radiation and planetary temperature”, Raymond T. Pierrehumbert stated the following about the proposed rGHE surface warming mechanism:
“An atmospheric greenhouse gas enables a planet to radiate at a temperature lower than the ground’s, if there is cold air aloft. It therefore causes the surface temperature in balance with a given amount of absorbed solar radiation to be higher than would be the case if the atmosphere were transparent to IR. Adding more greenhouse gas to the atmosphere makes higher, more tenuous, formerly transparent portions of the atmosphere opaque to IR and thus increases the difference between the ground temperature and the radiating temperature. The result, once the system comes into equilibrium, is surface warming.”
This is a most interesting quote, one that reveals a central misconception lying at the heart of the rGHE and AGW hypotheses. In order to get his message across, Pierrehumbert employs two quite specific terms – “enable” and “cause” – as if they were almost interchangeable. They are not. Read the two highlighted sentences once more. “An atmospheric ‘GHG’ enables a planet to radiate at a temperature lower than the ground’s, if there is cold air aloft. It therefore causes the surface temperature to be higher than would be the case if the atmosphere were transparent to IR.”
How did he get from “enables” to “therefore causes”?
He seems to forget that there’s crucially a third term that needs to be included before this chain is complete and one is able to see the whole picture, and that term is “necessitate”.
Something necessitates an effect, but cannot cause the effect before it is enabled to do so.
I will explain … Continue reading →