A presentation such as this, going as straight to the point as this one does, will necessarily rely on a fairly extensive ‘back catalogue’ of supporting graphs, figures and clarifications, most of which were generated in response to the likely questions and objections that might arise along the way, in the course of the argument being set up. Seeing how addressing these at every turn and having to substantiate all choices made at each single step would bog down and/or sidetrack the presentation to such an extent that the overall message would ultimately become lost in the noise, they will however have to remain in the background for now, rather kept ready at hand for the next round, so to speak. My point is this: Let the argument, as it stands, be presented first, to its completion – and then bring on the critique.


The ‘AGW (CO2) warming hypothesis’ (really just another name for ‘the general idea of an «enhanced greenhouse effect» causing global warming’) says that, as the total content of CO2 in the atmosphere rises over time, so will global temperatures – in short: «Temps should go up». The scientific method demands that any scientific hypothesis should be able to make predictions like this, statements or claims about the world that can be tested, thus allowing us to either strengthen or weaken our trust in the explanatory power of our hypothesis. However, if there is to be any point in performing such a test, the prediction being tested needs to be relevant, i.e. it should be more or less unique to our particular hypothesis. So is «Temps should go up» a relevant prediction? No. It’s a prediction, but it’s not a relevant one. Because it isn’t specific enough. It isn’t unique to the ‘CO2 warming hypothesis’. It cannot separate between one proposed cause and another. For example, ‘more solar heat being absorbed by the Earth system over time’ would be an alternative explanation of multidecadal global warming to the «enhanced-greenhouse-effect» proposition. Both would predict the world to get warmer. So how do you choose one over the other? You hone in on an observation that would be unique to your favoured explanation. And now you’ve got yourself a relevant prediction to be tested …!

We, after all, want to find the cause behind the observed effect (‘global warming’), not the effect itself – that has already been found. That’s merely our starting point.

Continue reading